Cross talk between polysulfide and nitric oxide in rat peritoneal mast cells.

نویسندگان

  • Amira Moustafa
  • Yoshiaki Habara
چکیده

The aim of this study was to define the effects of polysulfide on intracellular Ca(2+) concentration ([Ca(2+)]i) and the underlying machinery, especially from the hydrogen sulfide (H2S) and nitric oxide (NO) perspectives, in rat peritoneal mast cells. We found that a polysulfide donor, Na2S4, increased [Ca(2+)]i, which is both extracellular and intracellular Ca(2+) dependent. Intracellular Ca(2+) release induced by Na2S4 was attenuated by the addition of a ryanodine receptor blocker. A slow-releasing H2S donor, GYY4137, dose dependently increased [Ca(2+)]i that was independent from extracellular Ca(2+) influx. The GYY4137-induced [Ca(2+)]i release was partially attenuated in the presence of the ryanodine receptor blocker. Both polysulfide and H2S donors increased the intracellular NO levels in DAF-2-loaded mast cells, which were abolished by an NO scavenger, cPTIO. Inhibition of NO synthase (NOS) significantly abolished the polysulfide- or H2S-donor-induced [Ca(2+)]i elevation in the absence of extracellular Ca(2+) An NO donor, diethylamine (DEA) NONOate, increased [Ca(2+)]i in a concentration-dependent manner, in which both extracellular and intracellular Ca(2+) are associated. At higher concentrations, the DEA NONOate-induced [Ca(2+)]i increases were attenuated in the absence of extracellular Ca(2+) and by the addition of the ryanodine receptor blocker. H2S and NO dose dependently induced polysulfide production. Curiously, polysulfide, H2S, and NO donors had no effect on mast cell degranulation. Among synthases, cystathionine-γ-lyase, and neuronal NOS seemed to be the major H2S- and NO-producing synthases, respectively. These results indicate that polysulfide acts as a potential signaling molecule that regulates [Ca(2+)]i homeostasis in rat peritoneal mast cells via a cross talk with NO and H2S.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FIVE ALPHA DIHYDROTESTOSTERONE (5α-DHT) MAY MODULATE NITRIC OXIDE RELEASE VIA ENDOGENOU S CYTOKINES IN PERITONEAL MA CROPHA GES OF NZB/BALBc MICE

Recent studies have established that sex hormones directly or indirectly affect T and B cells and macrophages by manipulating the production of cytokines. In this study the possibility of the effect of 5a-DHT on macrophage (MΦ) nitric oxide (NO) release via interleukin-l, 6 (lL-1β, IL-6) or tumor necrosis factor-a (TNFα) was investigated. The endogenous cytokines IL-1β, IL-6 and TNF-α were ...

متن کامل

Inhibition of NO-synthase and degranulation of rat omental mast cells in vitro

Mast cell amines, platelet-activating factor (PAF), thromboxanes and leukotrienes have been shown to be released during nitric oxide-synthase inhibition in the rat intestine. Mast cells in rat isolated omentum (OMCs) or isolated from the rat peritoneal cavity (PMCs) have been used here to investigate the relationship(s) between these agents. N-nitro-L-arginine methyl ester (L-NAME, 100 muM) cau...

متن کامل

AGE proteins as a causative factor in Alzheimer's Disease

The reaction between reducing sugars and protein free amines, known as the Maillar reaction results in the formation of advanced glycation endproducts (AGEs). AGE modification changes the structure of proteins to amyloid cross-beta structure. These protein structures can activate receptors known as RAGE on glial cells (microglia and astrocytes), and induce the expression of inducible nitric oxi...

متن کامل

AGE proteins as a causative factor in Alzheimer's Disease

The reaction between reducing sugars and protein free amines, known as the Maillar reaction results in the formation of advanced glycation endproducts (AGEs). AGE modification changes the structure of proteins to amyloid cross-beta structure. These protein structures can activate receptors known as RAGE on glial cells (microglia and astrocytes), and induce the expression of inducible nitric oxi...

متن کامل

Mast cells boost myeloid-derived suppressor cell activity and contribute to the development of tumor-favoring microenvironment.

Inflammation plays crucial roles at different stages of tumor development and may lead to the failure of immune surveillance and immunotherapy. Myeloid-derived suppressor cells (MDSC) are one of the major components of the immune-suppressive network that favors tumor growth, and their interaction with mast cells is emerging as critical for the outcome of the tumor-associated immune response. He...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 310 11  شماره 

صفحات  -

تاریخ انتشار 2016